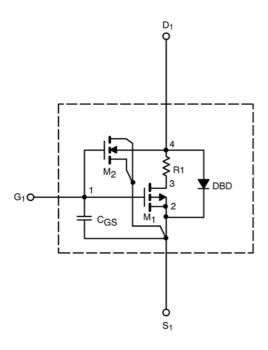


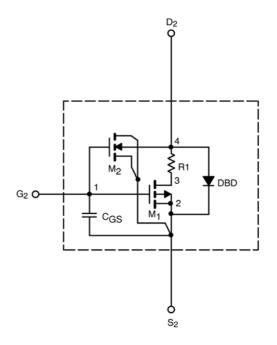
SPICE Device Model Si6955ADQ Vishay Siliconix

Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{qd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

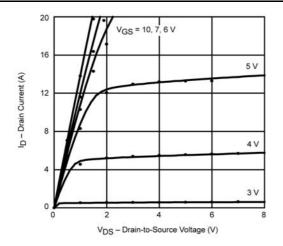
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

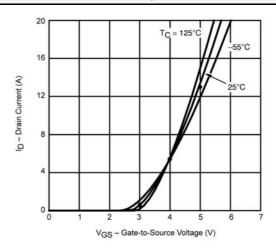
www.vishay.com Document Number: 70550 S-60142-Rev. B, 13-Feb-06

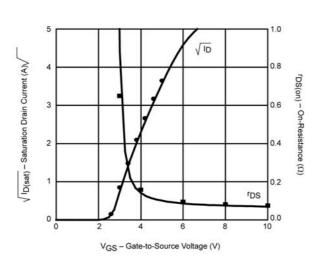
SPICE Device Model Si6955ADQ

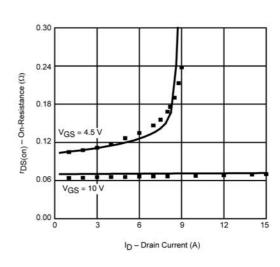
Vishay Siliconix

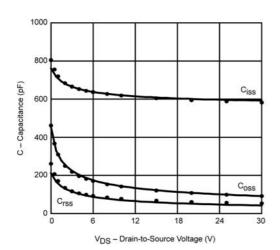
Parameter	Symbol	Test Condition	Typical	Unit
raiameter	Symbol	rest Condition	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	2.2	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	61	А
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -2.9 \text{ A}$	0.070	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -2.2 \text{ A}$	0.108	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -2.9 \text{ A}$	5.5	S
Diode Forward Voltage ^a	V_{SD}	I _S = -1 A, V _{GS} = 0 V	0.8	V
Dynamic ^b	:		•	-
Total Gate Charge ^b	Q_g	V_{DS} = -10 V, V_{GS} = -5 V, I_{D} = -2.9 A	4.5	nC
Gate-Source Charge ^b	Q_{gs}		2	
Gate-Drain Charge ^b	Q_{gd}		1.9	
Turn-On Delay Time ^b	t _{d(on)}	V_{DD} = -10 V, R_L = 10 Ω I_D \cong -1 A, V_{GEN} = -10 V, R_G = 6 Ω I_F = -1 A, di/dt = 100 A/ μ s	9	ns
Rise Time ^b	t _r		12	
Turn-Off Delay Time ^b	$t_{d(off)}$		18	
Fall Time ^b	t _f		24	
Source-Drain Reverse Recovery Time	t _{rr}		29	

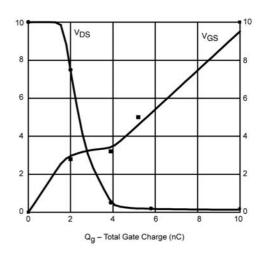

Notes


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si6955ADQ Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.